Abteilung
Neuromorphe Informationsverarbeitung
Toggle navigation
Startseite
Forschung
Maschinelles Lernen
Neuroprothetik und neuroinspirierte Signalverarbeitung
Mainframes und Enterprise Computing
Eingebettete Systeme
Publikationen
Abteilung
Übersicht
Prof. Dr. Martin Bogdan
Sekretariat
Jun.-Prof. Dr. Thomas Schmid
Dr. Sophie Adama
Dr. Jörn Hoffmann
Ferney Beltran Velandia
Max Braungardt
Marc Franke
Clemens Fritzsch
Dominik Krenzer
Maksim Kukushkin
Mahsa Raeiati Banadkooki
Martin Walther
Patrick Schöfer
Lehre
Sommersemester 2024
Wintersemester 2023/24
Sommersemester 2023
Wintersemester 2022/23
Frühere Semester
Vorlagen
Abschlussarbeiten
Impressum
Evaluating the DoC-Forest tool for Classifying the State of Consciousness in a Completely Locked-In Syndrome Patient
Sleep analysis in a CLIS patient using soft-clustering: a case study
Assessing consciousness in patients with disorders of consciousness using soft-clustering
Application of Soft-Clustering to Assess Consciousness in a CLIS Patient
Yes/No Classification of EEG data from CLIS patients
Longitudinal Analysis of the Connectivity and Complexity of Complete Locked-in Syndrome Patients Electroencephalographic signal
Motion Detection in Videos of Coherence Matrices in order to detect Consciousness States in CLIS-patients– an Approach
Using Time Domain and Pearson’s Correlation to Predict Attention Focus in Autistic Spectrum Disorder from EEG P300 Components
Extendable Hybrid approach to detect consciousness states in a CLIS patient using machine learning
Consciousness Detection in Complete Locked-in State Patients using Electroencephalogram Coherency and Artificial Neural Networks
Nächste Seite »