Abteilung
Neuromorphe Informationsverarbeitung
Toggle navigation
Startseite
Forschung
Maschinelles Lernen
Neuroprothetik und neuroinspirierte Signalverarbeitung
Mainframes und Enterprise Computing
Eingebettete Systeme
Publikationen
Abteilung
Übersicht
Prof. Dr. Martin Bogdan
Sekretariat
Jun.-Prof. Dr. Thomas Schmid
Dr. Sophie Adama
Dr. Jörn Hoffmann
Ferney Beltran Velandia
Max Braungardt
Marc Franke
Clemens Fritzsch
Dominik Krenzer
Maksim Kukushkin
Mahsa Raeiati Banadkooki
Martin Walther
Patrick Schöfer
Lehre
Wintersemester 2024/25
Sommersemester 2024
Wintersemester 2023/24
Sommersemester 2023
Frühere Semester
Vorlagen
Abschlussarbeiten
Impressum
Neuroprothetik und neuroinspirierte Signalverarbeitung
Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression
Automated Quantification of the Relation between Resistor-Capacitor Subcircuits from an Impedance Spectrum
Synaptic energy drives the information processing mechanisms in spiking neural networks
Discerning Apical and Basolateral Properties of HT-29/B6 and IPEC-J2 Cell Layers by Impedance Spectroscopy, Mathematical Modeling and Machine Learning
Digital Detection and Analysis of Branching and Cell Contacts in Neural Cell Cultures
A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses
Synchrony State Generation: an Approach using Stochastic Synapses
Online SVR Training by Solving the Primal Optimization Problem
Automatic Cluster Detection in Kohonen’s SOM
Nächste Seite »