Abteilung
Neuromorphe Informationsverarbeitung
Toggle navigation
Startseite
Forschung
Maschinelles Lernen
Neuroprothetik und neuroinspirierte Signalverarbeitung
Mainframes und Enterprise Computing
Eingebettete Systeme
Publikationen
Abteilung
Übersicht
Prof. Dr. Martin Bogdan
Sekretariat
Jun.-Prof. Dr. Thomas Schmid
Dr. Sophie Adama
Dr. Jörn Hoffmann
Ferney Beltran Velandia
Max Braungardt
Marc Franke
Clemens Fritzsch
Dominik Krenzer
Mahsa Raeiati Banadkooki
Martin Walther
Lehre
Sommersemester 2023
Wintersemester 2022/23
Sommersemester 2022
Wintersemester 2021/22
Frühere Semester
Vorlagen
Abschlussarbeiten
Impressum
Learning algorithms for spiking neural networks: should one use learning algorithms from ANN/DL or neurological plausible learning? – A thought-provoking impulse.
Application of Soft-Clustering to Assess Consciousness in a CLIS Patient
Evolving Hardware by Direct Bitstream Manipulation of a Modern FPGA
Coprocessors for special neural networks: KOKOS and KOBOLD
CoBEA: Framework for Evolving Hardware by Direct Manipulation of FPGA Bitstreams
Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults
Yes/No Classification of EEG data from CLIS patients
Evaluation of three machine learning algorithms for the automatic classification of EMG patterns in gait disorders
Consciousness Detection in a Complete Locked-in Syndrome Patient through Multiscale Approach Analysis
Longitudinal Analysis of the Connectivity and Complexity of Complete Locked-in Syndrome Patients Electroencephalographic signal
Nächste Seite »