
CoBEA: Framework for Evolving Hardware by Direct
Manipulation of FPGA Bitstreams

Jörn Hoffmann∗
Clemens Fritzsch∗
Martin Bogdan

jhoffmann@informatik.uni-leipzig.de
fritzsch@informatik.uni-leipzig.de
bogdan@informatik.uni-leipzig.de

Leipzig University
Leipzig, Germany

ABSTRACT
Evolvable Hardware is a general approach to apply Evolutionary
Algorithms to hardware in order to design, improve, or adapt cir-
cuits. Approaches that directly manipulate the bitstream of field-
programmable gate arrays (FPGAs) had been abandoned due to the
lack of well-documented bitstream formats.

Recent advancements in open source FPGA toolchains funda-
mentally changed the feasibility of direct bitstream manipulation
yet again. Unfortunately, contemporary tools are slow and waste
valuable time calling external tools.

Therefore, we present an integrated approach that combines
bitstream manipulation, low-level communication, and hardware
evaluation into a single framework called CoBEA. In addition, the
framework allows compaction of the bitstream and direct configu-
ration of the FPGA device without having to program flash memory.
Compared to the state of the art, our framework achieves an accel-
eration of 130 times for FPGA reconfiguration. This allows complex
hardware evolution experiments to be performed.

CCS CONCEPTS
• Hardware → Evolvable hardware; • Software and its engi-
neering → Abstraction, modeling and modularity; Software perfor-
mance; • Computing methodologies→ Evolvable hardware.

KEYWORDS
Bitstream manipulation, Evolvable hardware, Framework

ACM Reference Format:
Jörn Hoffmann, Clemens Fritzsch, and Martin Bogdan. 2022. CoBEA: Frame-
work for Evolving Hardware by Direct Manipulation of FPGA Bitstreams.
In Genetic and Evolutionary Computation Conference Companion (GECCO
’22 Companion), July 9–13, 2022, Boston, MA, USA. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3520304.3528821

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3528821

1 INTRODUCTION
Evolvable Hardware (EHW) generally describes approaches that
apply Evolutionary Algorithms (EA) to hardware. The subdomain
of evolutionary hardware design is concerned with the creation of
electronic circuits for implementation in a target system [4].

Field-programmable gate arrays (FPGAs) are a very suitable tar-
get system for evolutionary hardware design. They are readily avail-
able and highly reconfigurable. Thompson has shown their capacity
for solving non-trivial problems [6]. His approach was to directly
manipulate the configuration bits inside the FPGAs bitstream with
a Genetic Algorithm and evaluate the fitness intrinsically.

Unfortunately, the FPGAs with well-documented bitstreams (e.g.
the Xilinx 6200 family) were discontinued. Due to security concerns,
the vendors keep details about the bitstreams of modern FPGAs
secret. In conjunction with the use of switch-matrices for routing,
the direct manipulation of bitstreams was deemed unfeasible [4]. It
was abandoned in favor of Virtual Reconfigurable Circuits (VRCs)
[5] that implement an application specific reconfigurable system
inside an FPGA. A VRC can be reconfigured without reconfigu-
ration of the underlying FPGA. Another alternative is the use of
dynamic partial reconfiguration (DPR) to switch whole blocks of
the configuration without having to know the internal structure of
the partial bitstream [7]. While these abstractions enable the safe
application of EAs, they neglect the huge potential for solutions
outside of their abstraction model.

While there were attempts to analyze and document the un-
known bitstream formats, the results were limited. Cancare et al.
[1] were able to document the configuration bits for lookup tables
in Xilinx Virtex-4 FPGAs. The more complex routing resources
proved too difficult and their potential remained unused.

Recent advancements in open source FPGA toolchains funda-
mentally changed the feasibility of direct bitstream manipulation
yet again. They led to a profound documentation of Lattice iCE40
FPGAs by Project Icestorm [9].Whitley et al. leveraged the provided
open source toolchain and the included documentation to show the
feasibility of safe direct bitstream manipulation [8]. Nevertheless
their approach proved to be highly inefficient. Their implemen-
tation takes 3.5 seconds for a single reconfiguration of the FPGA.
Thompsons experiment, for example, took 5000 generations with 50
individuals each [6]. As a result the necessary reconfigurations take
more than 10 days. Our investigation has identified the reason for

https://doi.org/10.1145/3520304.3528821
https://doi.org/10.1145/3520304.3528821


GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Hoffmann, Fritzsch, and Bogdan

this lack of speed: a low degree of integration and the dependence
on external programs in combination with ill-suited hardware.

In this paper, we therefore present a highly integrated and mod-
ular framework called CoBEA (Configure by Evolutionary Algo-
rithm). It speeds up the reconfiguration more than 130 times and
is an all-in-one solution. It contains the possibility to implement
experiments, integrate new EAs, allows the direct manipulation of
bitstreams, is able to directly program the FPGA and can save the
results to CSV or HDF5 format.

Our main contributions in this paper are:
• An integrated approach to directly manipulate the bitstream.
We show how it can be used to reduce the reconfiguration
time.

• The implementation of the integrated approach in the form
of the open-source CoBEA framework.

• An investigation of the speedup of the reconfiguration time
by comparing experimental measurements of CoBEA with
an implementation based on Project Icestorm.

The rest of the paper is organized as follows. Section 2 describes
the peculiarities of evolutionary hardware design by direct bit-
stream manipulation. In section 3, we briefly present the implemen-
tation of our framework and the difference to other approaches.
Section 4 covers experimental measurements and section 5 dis-
cusses them. Section 6 concludes the paper with a summary and
an outlook on further research.

Start

Synthesize
Basic Bitstream

Initialize
Population

Modify Bitstream
according to Genotypes

Reconfigure
FPGA

Measure
FPGA output

Calculate
Fitness

Terminate?

End

Select next
Population

Mutate

Recombine

No

Yes

Figure 1: Evolutionary hardware design by direct manipu-
lation of the bitstream. Most steps are common for EAs
while others are peculiar to this approach .

2 BASICS
Evolutionary hardware design aims to create electronic circuits
for implementation in a target system by employing Evolution-
ary Algorithms. The use of direct bitstream manipulation implies
that the target system is an FPGA and that the fitness value is de-
termined intrinsically. Intrinsic fitness evaluation means that the
circuit candidate is implemented in the target FPGA and measured
in an application specific way.

A generalized overview of evolutionary hardware design by
manipulating bitstreams is shown in Figure1. Most steps are typical
for EAs, like population initialization or mutation. Their details
depend on the specific employed EA.

Four steps are indispensable when manipulating bitstreams di-
rectly. Since a complete FPGA is very complex, only a portion of it
is designated as evolvable region. Other parts are kept constant and
defined in a basic bitstream. This bitstream has to be synthesized
before the evolutionary cycle can be started. Inside the cycle, its
evolvable region is modified according to the genotypes to create
a matching configuration. Afterwards, the target FPGA is recon-
figured with the bitstream and the measurements for the intrinsic
fitness evaluation are taken.

The most time-consuming tasks in the evolutionary cycle are
the reconfiguration of the FPGA and the measurements. The mea-
surements have to be chosen according to the desired circuit and
have to be optimized for each application. The reconfiguration,
on the other hand, is independent of the application and can be
optimized generically. Therefore, we focused on the acceleration of
the reconfiguration in our CoBEA framework.

3 IMPLEMENTATION
The most recent approach to EHW with direct bitstream manipula-
tion employ an FPGA toolchain. Such toolchains typically consist
of distinct tools for specific tasks, like creating the bitstream from
intermediate representations or reconfiguration of the FPGA.

The reconfiguration workflow used by Whitley et al. [8] is de-
picted in figure Figure2(a). It involves expensive data transforma-
tions and the execution of external tools. At first, the internal data
structure of the circuits is written to an ASCII representation 1 .
Then an external packer is invoked 2 which reads the file 3 and
creates the actual bitstream file 4 . After that, a programmer tool
is executed 5 . It reads the bitstream 6 and writes it to the flash
memory beside the FPGA 7 . Finally, the FPGA is reset 8 to trigger
the reconfiguration and the reading of the bitstream from the flash
memory 9 .

As depicted in Figure2(b), our approach reduces this procedure
to only three steps. First, it converts the internal representation of
the circuitry directly to a bitstream representation 1 . Then our
tool automatically compacts this bitstream to reduce its size 2 . For
this purpose, it removes unused configuration data, omits metadata
and reorders the commands send to the device. Finally, it triggers
the reconfiguration of the fabric and pushes the configuration to
the FPGA 3 .

It is important to emphasize that the FPGA is configured di-
rectly without flash memory. On the one hand, this increases the
configuration speed, since the programming cycles require addi-
tional time. On the other hand, reliability is increased as the flash



CoBEA GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

Internal
Data Structure

EH Program

ASCII
File

1 write

Packer

2 start
3 read

Bit-
stream
File

4
write

Programmer

5 start

6 read

FPGA Flash

7 write8 reset

9 read

(a) Using an FPGA toolchain and flash.

Internal
Data Structure

CoBEA

Bitstream

Compact Bitstream

1 convert

2 compact

FPGA

3 configure

(b) Using CoBEA and direct recon-
figuration.

Figure 2: Approaches for reconfiguring an FPGA for evolu-
tionary hardware design.

memory wears out with each programming cycle. Unfortunately,
the availability of direct reconfiguration depends on the system
around the FPGA. We strongly advise to select a system that allows
for direct reconfiguration, like the iCE40 HX8K breakout board
(ICE40HX8K-B-EVN).

In addition to the reconfiguration module for multiple FPGAs,
the CoBEA framework currently consists of reusable data structures
for EA (e.g. genes), simple Evolutionary Algorithms, and example
experiments (e.g. [6]). Furthermore, it is able to read and write
comma separated value (CSV) files and supports the Hierarchi-
cal Data Format version 5 (HDF5), which is widely used for the
exchange of research results.

The framework itself is completely written in Python. The code
follows the clean architecture principle [3] and is therefore highly
extensible and maintainable. The code is open source and can be
obtained from https://github.com/nmi-leipzig/cobea.

4 EXPERIMENTS
The experiments are focused on the reconfiguration speed. The
reconfiguration is the most time-consuming part that can be opti-
mized without regard to the actual circuit design.

4.1 Setup
The reconfiguration module of our CoBEA framework was isolated
and compared with an implementation based on the open source
toolchain Project Icestorm [9], which is used in other approaches
[8]. The software used to create the measurements is available at
https://zenodo.org/record/6418292.

The experiment consists of loading a prepared bitstream onto an
FPGA board. The two used bitstreams are intermediate results from
actual EHW experiments with the software by Whitley et al. [8]
on an HX1K FPGA and with CoBEA on an HX8K FPGA. In order
to compensate for fluctuations, the reconfiguration is repeated 100

times back to back and the average time is determined. Two FPGA
platforms are used: an iCEstick with an iCE40 HX1K FPGA and an
iCE40 HX8K breakout board (ICE40HX8K-B-EVN). In contrast to
the iCEstick, theHX8K breakout board allows direct reconfiguration
without writing to a flash first. Both approaches were measured
for the HX8K breakout board. Additionally, CoBEA was measured
with and without bitstream compaction.

CoBEA Flash
Compact

CoBEA Flash

Icestorm Flash

0 2 4 6 8 10
Reconfiguration Time (s)

(a) For iCEstick with iCE40 HX1K. The iCEsticks design does not allow direct
reconfiguration of the FPGA.

CoBEA Direct
Compact

CoBEA Direct

Icestorm
Direct

CoBEA Flash
Compact

CoBEA Flash

Icestorm Flash

0 2 4 6 8 10
Reconfiguration Time (s)

(b) For iCE40 HX8K breakout board.

Figure 3: Reconfiguration times using Icestorm or CoBEA.
The error bars show the minimum and maximum.

4.2 Results
In the first experiment, the HX1K on the iCEStick was used. The
results are depicted in Figure3(a). Our integrated approach is faster
than the Icestorm-based implementation even without compaction.
With compaction, a speedup of more than 3x was achieved. Since
the iCEstick does not allow direct reconfiguration of the FPGA
without hardware modifications, both tools had to write to the flash
and trigger an FPGA reset. Therefore, the speedup of CoBEA is
mainly achieved by the compaction of the bitstream.

In the second experiment, the more flexible breakout board with
the HX8K was used. Both tools are therefore able to write either to

https://github.com/nmi-leipzig/cobea
https://zenodo.org/record/6418292


GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Hoffmann, Fritzsch, and Bogdan

the flash or reconfigure the FPGA directly. Comparing Figure3(b)
to Figure3(a) demonstrates the effect of the larger bitstream size for
the HX8K FPGA. The Icestorm-based implementation takes more
than double the time for a single reconfiguration. On the other
hand, the potential of our integrated approach is also demonstrated
as CoBEA with compaction is still faster for the HX8K than the
Icestorm based implementation for the HX1K.

The situation dramatically changes when the direct reconfigura-
tion of the FPGA is considered. Here, both tools achieve a significant
reduction in reconfiguration time. The Icestorm-based implemen-
tation reconfigures the FPGA nearly 16 times faster compered to
the usage of flash. CoBEA with compaction in turn is more than 8
times faster than the Icestorm-based implementation.

Overall, CoBEA directly reconfiguring the FPGA achieves an
speedup of more than 130x compared to the standard case of writing
to the flash with the Icestrom toolchain.

5 DISCUSSION
The experiments show a tremendous increase in reconfiguration
speed. Thompsons experiment [6] with 50*5 000 evaluation would
need less than 3 days for reconfigurations on the iCEstick when
using CoBEA compared to more than 9 days using the an Icestorm-
based implementation. Using the HX8K breakout board and direct
reconfiguration the overall time for reconfiguration reduces to 6
hours.

Three conclusions can be drawn from these results. First, full
integrated approaches like CoBEA gain a significant speedup over
calling external programs in the evolutionary cycle. Second, even
better programming times can be achieved when the bitstream is
compacted. And third, for this kind of experiments, the FPGA has
to be reconfigured directly.

CoBEA directly manipulates the bitstream of an FPGA and does
not rely on repeated synthesis runs. It achieves a significant speedup
over current approaches due to the integration of formerly external
tools. Because of its clean architecture, our framework is both exten-
sible and maintainable. This makes it comparatively easy to support
other FPGAs or add new Evolutionary Algorithms. In contrast to
other tools, it enables the experimental setup and results to be ex-
changed via standardized data formats such as HDF5. However,
one disadvantage that can be mentioned is that CoBEA is more
complex. But this downside is manageable due to the architectural
design.

A promising area of application for CoBEA is security research.
In contrast to classical design tasks, many security applications
are not impeded by the limited portability of results of EHW by
direct bitstream manipulation. They may even benefit from it, like
the security by diversity approach. Collins et al. [2], for example,
impeded reverse engineering by applying EHW on the level of the
hardware description language to create diverse designs for the
same function. Direct bitstream manipulation with CoBEA could
take this one step further and bind a specific design to a single
device.

6 CONCLUSION
In this paper we present an integrated approach to directly ma-
nipulate the bitstream of FPGAs for evolutionary hardware design.

Our implementation, the CoBEA (Configure by Evolutionary Algo-
rithm) framework, consists of predefined Evolutionary Algorithms,
example experiments and reusable data structures.

CoBEA incorporates three approaches. First, the direct manipu-
lation of the bitstream to omit additional synthesis steps for circuit
evolution. Second, the integration of the FPGA low level handling,
which eliminates time-consuming external program calls. And third,
the compaction of the bitstream in combination with the direct re-
configuration of the FPGA. Compared to the state of the art, the
results show that an evolutionary experiment on different FPGA
devices with CoBEA can achieve a speed increase of more than
130x .

In further work, it is planned to support more FPGAs like the
Xilinx 7-Series. In opposite to Lattice iCE40 family, they support
the dynamic partial reconfiguration. This makes it possible to up-
date only parts of the chip to further speed up the reconfiguration
process.

Another point is to use CoBEA to conduct experiments with
circuits for security purposes. In this way, the plan is to morph
or individualize circuits to harden them against hardware-level
attacks such as differential power analysis and clock glitching. For
example, we consider to extend the work of Collins et al. [2]. On the
other hand, we plan to develop hardware around existing circuits
to analyze and manipulate their internal processes.

DATA AVAILABILITY
The time measurements and the bitstreams that support Figure3
are openly available at https://zenodo.org/record/6413619.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Educa-
tion and Research (BMBF, 01IS18026B) by funding the competence
center for Big Data and AI "ScaDS.AI Dresden/Leipzig".

REFERENCES
[1] Fabio Cancare, Marco D. Santambrogio, and Donatella Sciuto. 2010. A direct

bitstream manipulation approach for Virtex4-based evolvable systems. In Pro-
ceedings of 2010 IEEE International Symposium on Circuits and Systems. IEEE.
https://doi.org/10.1109/ISCAS.2010.5537429

[2] Zachary Collins, Bayley King, Rashmi Jha, David Kapp, and Anca Ralescu. 2019.
Evolvable Hardware for Security through Diverse Variants. In 2019 IEEE National
Aerospace and Electronics Conference (NAECON). IEEE. https://doi.org/10.1109/
NAECON46414.2019.9058062

[3] Robert C. Martin. 2017. Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. Prentice Hall, Boston, MA. https://www.safaribooksonline.
com/library/view/clean-architecture-a/9780134494272/

[4] Ruben Salvador. 2016. Evolvable Hardware in FPGAs: Embedded tutorial. In
2016 International Conference on Design and Technology of Integrated Systems in
Nanoscale Era (DTIS). IEEE. https://doi.org/10.1109/DTIS.2016.7483877

[5] Lukáš Sekanina and Richard Růžička. 2000. Design of the Special Fast Re-
configurable Chip Using Common FPGA. In Proc. of Design and Diagnostics
of Electronic Circuits and Systems - IEEE DDECS’2000 (Smolenice, SK). 161–168.
https://www.fit.vut.cz/research/publication/6394

[6] Adrian Thompson. 1997. An evolved circuit, intrinsic in silicon, entwined with
physics. In Evolvable Systems: From Biology to Hardware. Springer Berlin Heidel-
berg, 390–405. https://doi.org/10.1007/3-540-63173-9_61

[7] Jim Torresen, Geir Aarstad Senland, and Kyrre Glette. 2008. Partial Reconfiguration
Applied in an On-line Evolvable Pattern Recognition System. In 2008 NORCHIP.
IEEE. https://doi.org/10.1109/NORCHP.2008.4738283

[8] Derek Whitley, Jason Yoder, and Nicklas Carpenter. 2021. Resurrecting FPGA
Intrinsic Analog Evolvable Hardware. In The 2021 Conference on Artificial Life.
MIT Press. https://doi.org/10.1162/isal_a_00448

[9] Claire Wolf and Mathias Lasser. 2015. Project IceStorm. http://bygone.clairexen.
net/icestorm/.

https://zenodo.org/record/6413619
https://doi.org/10.1109/ISCAS.2010.5537429
https://doi.org/10.1109/NAECON46414.2019.9058062
https://doi.org/10.1109/NAECON46414.2019.9058062
https://www.safaribooksonline.com/library/view/clean-architecture-a/9780134494272/
https://www.safaribooksonline.com/library/view/clean-architecture-a/9780134494272/
https://doi.org/10.1109/DTIS.2016.7483877
https://www.fit.vut.cz/research/publication/6394
https://doi.org/10.1007/3-540-63173-9_61
https://doi.org/10.1109/NORCHP.2008.4738283
https://doi.org/10.1162/isal_a_00448
http://bygone.clairexen.net/icestorm/
http://bygone.clairexen.net/icestorm/

	Abstract
	1 Introduction
	2 Basics
	3 Implementation
	4 Experiments
	4.1 Setup
	4.2 Results

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

